Deep Learning Inference for Embedded Applications Reference Design

deep learning

How to bring a deep learning inference to an embedded application?

The concept of pushing computing closer to where sensors gather data is a central point of modern embedded systems – i.e. the edge of the network. With deep learning, this concept becomes even more important to enable intelligence and autonomy at the edge. For many applications – from automated machinery and industrial robots on a factory floor to self-guided vacuums in the home, to an agricultural tractor in the field – the processing must happen locally.

The reasons for local processing can be quite varied depending on the application. Here are just a few of the concerns driving the need for local processing:

  • Reliability. Relying on an internet connection is often not a viable option.
  • Low latency. Many applications need an immediate response. An application may not be able to tolerate the time delay in sending data somewhere else for processing.
  • Privacy. The data may be private and therefore should not be transmitted or stored externally.
  • Bandwidth. Network bandwidth efficiency is often a key concern. Connecting to a server for every use case is not sustainable.
  • Power. Power is always a priority for embedded systems. Moving data consumes power. The further the data needs to travel, the more energy needed.

TI addresses the need for bringing deep learning inference at the edge for embedded applications with a new reference design leveraging the highly integrated AM57x Sitara processors.

Deep Learning Inference for Embedded Applications Reference Design

This reference design demonstrates how to use TI’s deep learning library (TIDL-library) on a Sitara AM57x SoC to bring deep learning inference (or deep learning at the edge) to an embedded application. This design shows how to run deep learning inference on either C66x DSPs (available in all Sitara AM57x SoCs) and/or EVE processors, which are treated as black boxed deep learning accelerators on the Sitara AM5749 SoC.

Brain-Like Computing Chips: A New Era In Electronics


• Automated sorting equipment
• Optical inspection
• Vision computer
• Code readers
• Industrial robots
• Logistics robots
• Currency counters
• ATMs
• Patient monitors
• Building automation
• Industrial transport
• Space, avionics & defense

Click here for the reference design. 


This article was first published on 27 September 2018 and was updated on 1 May 2019.



Please enter your comment!
Please enter your name here

Are you human? *